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         Chap 1. Intro. to Partial Differential Equations (PDEs) 
 

1.1 Conservation laws for governing equations of multiphysics simulations  

 
 Many PDEs for mathematical simulations come from a variety of conservation laws, 
which state that a particular measurable property of an isolated physical system does not 
change as the system evolves. 
 
Here are some conservation laws that are useful to generate governing PDEs for simulations: 
 
1) Conservation of mass: the total mass of a closed system of substances remains constant. 
 
2) Conservation of energy 
 
3) Conservation of linear momentum 
 
4) Conservation of electric charge 
 
 
 

1.2 Using conservation law to generate governing equations of multiple physics 
simulations: A General Formalism 

 Consider a spatio-temporal scalar field variable                 defined in a  
 
domain              ,  which has a boundary                .      
  
 
 
 
 
 
 

The conservation law of the scalar can be expressed as   
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where the first term indicates the change of scalar quantity enclosed in                ,  the second 
term denotes the gain/loss of the quantity via flow across the boundary                . The term on 
the right-hand side is the generative source q of u(r, t) in the domain. 
 

We can invoke the Reynolds transport Theorem on the first term 

The first term on the right-hand side reflects the direct change of the time-varying quantity u 
inside the domain at time t; whereas the second term indicates the gain/loss of u through the 
moving boundary in the time interval of (t, t+dt). 
 
 We want to rewrite the second term of a surface integral to a volume integral. This can be 
done by using Gauss (divergence) law: 
 
 

Thus, we can have      
 
 
 
 
 
                          
 
 From DuBois-Reynolds lemme, at every position in                 , the u satisfies the PDE 
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              b) 
 
 
 
 
 
 
 Let                        = internal energy 
 
 
 
 
    is the governing PDE for thermal conduction phenomenon. 
 
 

1.3 Specific example of mass balance 

   Conservation of mass can be extended to a mass balance for an accounting of material 
entering and leaving a system. 
 
 Consider a system 
 
 
 
 
 
 
 
 
  
 
 
 Total mass in                 = 
 
 
 
 Net mass change due to net flow =   
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                 From integration by part  
 
 
 
 
  
 
 
  Let  
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1.4 Physics-related PDEs 

  1) Laplace’s equation of a dependent field variable  
 
 
 
 Laplace’s equation is an important equation occurring in studies of  
 a) source-free electrostatics 
 b) irrotational flow of perfect fluid 
 c) heat flow   
 
 
  2) Poisson’s equation of a dependent field variable  
 
 
 
which describes electrostatics with a source term  
 
  3) Helmholtz equation   
    
which appears in describing propagation of either electromagnetic waves or elastic (i.e., 
acoustic) waves,  
 
or time-independent diffusion equation 
 
  4) Time-dependent diffusion equation  
  
 
 
  5) Time-dependent wave equation 
 
 
  6) Klein-Gordon equation  
 
   
  which is the (Schrodinger equation related) relativistic wave equation, derivable from 
quantized form of relativistic energy-momentum relation.  
 
  7) Time-dependent Schrodinger equation  
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  8) Other equations for describing elastic wave propagation, movements of viscous 
fluids  
 
 

1.5 Classification of PDEs 

  
  Most of the governing equations in physical models are second-order partial 
differential equations (PDEs). For generality, let us consider the PDE of the in a 2D 
domain  
 
 
 
where A, B, C, ..., G are either constants or may be functions of both independent 
variables (i.e., x, y) and/or dependent variable u(x, y) . 
 
Let                                                     to be continuous in  
 
 
 
 
 
u(x, y) forms a solution surface above/below the x-y plane. 
 
Equations (1) and (2) can be combined and rewrite in a matrix form 
 
 
 
 
 
                               could be discontinuous (i.e., indeterminate) when  
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Here (dy/dx) denotes the characteristic curves on the solution surface u(x, y).  
 
Solving equation (3) gives the equation of the characteristics in physical space (x, y) as 
 
 
 
  
 which could be either real or imaginary (complex conjugates). 

Thus, the second-order PDEs can be classified according to the sign of  
 
a) Elliptic PDEs:                           , the characteristic curves do not exist, such as 
 
 

A=1, B=0, and C=1 —>  
 
In this case, the solution surface u(x, y) is bounded in                with a closed boundary      
(curve or surface).  Unique solution exists when specifying  
     u   on            ,   or 
                 on    
 
 
b) Parabolic PDEs:                             , only one set of characteristics exists, such as 
 for 1-D time-dependent diffusion equation 
       
         
 
 
 
 
 
Solution of the problem is defined in the open region  
 
Both initial condition                                         ,  and boundary conditions  
 
 
 
 

Acdyft Ccdxf Bdx dy o and therefore

3 A CdYdx5 BC x c O

BI TEAL
92A

B 4AC

E 4ACLO

32 12 2 0 Laplace's equation

BZ4AC 4 so

Rex D 22

2h
Un Man or

B 4AC o

ZULX t
Tt d

224Gt
2 2 0 g d o

A x so 13 0 c o 1324AC O

Rex t with asxEb often

Ulaexsb.t ojfcxjucxa.tk ft
or

UncKast
ucx b t gc uncabit



 
 
 
 
 
 
 
 
 
 
are required to defined the unique solution. 
 
 
For problems in which real characteristics exist, a disturbance can propagates only over a 
finite region. A signal at a point O in                        can be felt only if it is originates from a 
finite region call “the zone of dependence” of point O. The down stream region affected by 
this signal at O is called “the zone of influence” of point O. 
 
c) Hyperbolic PDEs: 

Two sets of characteristics exist, such as the 1-D wave equation in (x, t) 
 
 
 
 
 
Unique solution is defined in the open region  
 
Both initial condition 
and boundary conditions  
 
 
are needed to determine the unique solution. 
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